The Stealth Digital Analyzer (SDA) product family offers a true "One Box" solution for HFC network testing and deployment of digital video, data, and traditional analog services. While preserving the rugged design and industry standard RF sweep technique of its Stealth Sweep System predecessor, the SDA series now adds test features to qualify the network for today's high growth subscriber services. "Find and Fix" tools are included that reduce technician time for the most labor intensive maintenance and troubleshooting assignments, like tracking down reverse ingress, optical node alignment, proof-of-performance testing, and return path alignment. For these demands, the SDA provides advanced QAM analysis (optional), a powerful 5 to 1,000 MHz spectrum display with cable modem analysis (Zero Span), PathTrak™ Field View, and full forward and reverse sweep capability. And with the versatile combination of standard and optional features, the SDA can be customized for both the cable operator’s network technology level and budget.

Why Sweep is the Right Solution

The majority of all transmission errors (including digital) are found by measuring the frequency response of the network. Every physical error in the network that influences the transmitted signals will be revealed in the sweep trace. This means the sweep results are independent of transmission methods and formats.

The goal is to transmit all signals with the best noise specifications and the lowest intermodulation distortion. Sweep is the most effective and efficient tool to show the best compromise between the two. In other words, sweep helps technicians setup the right gain versus frequency.

Normalized Sweep

To ensure that network specifications are maintained, starting from the headend to the subscriber, each section of the network has its own set of specifications. A normalized sweep divides the network into easily managed sections. Each of these network sections, with its own set of specifications and quality requirements, can be designated to an individual team or contractor.
The SDA series uses a variation of the original Stealth Sweep technology. Existing video carriers (analog, digital, or scrambled) are referenced when possible, eliminating any possibility of interference to the subscriber services. Where carriers are absent, the SDA-5500 Transceiver at the headend transmits a sweep to fill vacant spectrum areas. To remove effects of headend level drift, the SDA-5500 Transceiver monitors the levels and transmits new reference information with every sweep. This means that if the signal levels are changing in the headend, they won’t effect the sweep response measurement. The SDA-5500 Transceiver has all of the measurement capability of the SDA-5000 Receiver, therefore the Headend Technician can keep an eye on headend levels.

The SDA series also offers significantly faster forward sweep speed, especially in systems that include many digital signals. The SDA is capable of referencing 64/256 QAM signal types, so there is no need to worry about subscriber interference or injecting sweep carriers in the guard bands.

Stealth Sweep and SDA Series Sweep Compatibility

The SDA series is completely sweep compatible with Stealth 3SR, 3ST, 3HRV, and StealthTrak SSA-1000 series meters. The only requirement is that firmware version 9.3 is installed in Stealth meters, and firmware version 2.0 installed in StealthTrak SSA-1000 meters. To take full advantage of the faster forward sweep capability, all head-end and field instruments must be SDA series.

Preparing the Network for Interactive Services

Reverse Sweep

The SDA-5000 (with OPT 1 installed) allows simple and practical testing of the reverse path frequency response, regardless of the frequency (5 to 1000 MHz). And the SDA has a built-in reverse sweep transmitter, which means externally generated carriers are not required. Furthermore, the SDA-5500 transmitter and field receivers have frequency agile telemetry. They can be configured to communicate on both the forward and reverse paths.

Forward (downstream) and reverse (upstream) path alignment can be performed simultaneously by one person. The operator simply indicates which screen should be displayed—the response from the headend to the test point, or the response from the test point to the headend. A reverse sweep can uncover mismatch problems, which reveal themselves as standing waves, or duplex filter roll-offs that can severely hamper the quality of services in the reverse band.

Multiple User Reverse Testing

For intense reverse testing requirements, the rack mounted Model SDA-5510 Headend Reverse Sweep Manager handles the reverse sweep job for up to ten different technicians on the same cluster of nodes. Using the SDA-5510 in conjunction with the model SDA-5500 Transceiver provides a full forward and reverse sweep alignment solution. The SDA-5510 can also stand alone in remote hub sites for dedicated reverse alignment applications.
Portable Reverse Sweep Manager

The portable version of the SDA-5510 allows technicians to install a multiple user Reverse Sweep Manager in locations where it is not practical to install a rack mount unit. The SDA-5000 with OPT 6 provides all the functionality of the SDA-5510, but in the rugged SDA-5000 field unit package. Applications include installation in systems where reverse traffic is received by an ATM/SONET/SDH network rather than returning to the headend, or any condition that prevents rack mount installation or access to a headend/hub site (Note: Forward sweep capability not included with SDA-5000 with OPT 6).

Seeing Headend/Hub Site Accumulated Ingress in the Field

The reverse noise feature of the SDA-5000 enables easy reverse path noise testing. The operator simply presses the "Noise" soft key while reverse sweeping, and the display changes to a noise/ingress response indicating the noise level over the entire reverse path spectrum measured at the headend or hub site. All SDA Transmitters provide feedback to the field regarding the current condition of noise and ingress in the headend, even when noise or ingress is "swamping" the telemetry (broadcast mode). A "picture" of the headend noise/ingress is sent out to the SDA Receiver via a special forward telemetry carrier.

QAM View Ensures Quality Forward Path Digital Services

For measurement and analysis of digital TV and forward modem signals, the new digital QAM View option provides a full complement of digital quality measurements. Included is a 64/256 QAM constellation display with zoom, average digital power level, Bit Error Rate (BER), 21 to 35 dB Modulation Error Ratio (MER), and a noise margin "cliff effect" parameter. An equalizer display shows equalizer stress and distance to fault.

In addition, an exclusive noise mode allows technicians to see ingress/noise under an active digital carrier. This tool is invaluable for detecting forward path ingress otherwise hidden by conventional spectrum views!

In-Service Cable Modem Analyzer

For "bursty" digital signals such as TDMA technologies used on cable modems for reverse services, the SDA-5000 offers two measurement choices. The first, a one-button cable modem analyzer test, quickly shows carrier-to-noise measurements. The second, an advanced Zero Span feature, utilizes a time domain display to allow power measurements while the modem is in service. Both methods are compatible with global cable modem standards.
Detecting Ingress in the Field

The operator looks at the ingress present at the field test point using the spectrum display on any of the receivers, then switches to reverse ingress/noise to see the ingress at the headend for comparison. This time-saving procedure helps in locating sources of ingress. An adjustable dwell time ensures that even intermittent ingress is detected. The preamp and low-pass filter also assures that even low-level ingress is seen. The preamp and low-pass filter on the SDA-5000 assures that ingress can be measured on devices with bi-directional testpoints or testpoint values of 30 dB or more.

PathTrak Field View

When a system is equipped with the PathTrak Performance Monitoring System, system technicians can benefit from the ultimate ingress fighting tool—the PathTrak Field View option for the SDA-5000. With Field View, the SDA-5000 receives a return path headend spectrum broadcast from the PathTrak unit and compares it with a return path spectrum at any field testpoint. The side-by-side spectrum comparison instantly reveals to the technician whether the ingress source is originating at the current testpoint or at a different location. The comparative spectrum technique slashes noise/ingress troubleshooting time, since the technician can immediately verify whether corrective action performed in the field (local trace) results in improvement in the headend spectrum (remote trace).

Powerful Graphic Displays and Common User Interface Allow Technicians to Learn Fast

The results of all measurements are presented to the user in clear, highly informative, summary displays. The graphics present the information the way the technician wants to see the results—no further interpretation required. For example, testpoint compensation values are entered at the start of testing. Displays then calculate actual levels automatically, minimizing field errors.

With SDA series products, all levels of instruments are familiar to the technician, regardless of which is learned first, because the same user interface conventions are used across all product families (several examples of the icons are included in this literature). The learning curve for a progressing technician is considerably shorter than with alternative test equipment. This means urgent upgrade projects make the most efficient use of limited resources when SDA series products are used.
Comprehensive Testing

The SDA provides an extensive set of signal analysis features designed for proving, and improving, network quality. All tests utilize a practical user interface, normally requiring only the push of a button.

Level Measurement

The SDA instruments have a comprehensive single-channel level display that indicates tuned channel, video frequency and level, audio frequency and level, and the difference between video and audio carrier levels.

Making accurate digital average power measurements is addressed with the digiCheck measurement function. The digiCheck feature is compatible with most "non-bursty" digital modulations in use today (i.e., 16, 32, 64, and 256 QAM, QPR, QPSK, VSB, CAP16, etc.).

Analog and Digital Signal Limits

Analog signal threshold limits have always been a technician’s favorite feature of Acterna instruments. Automatic limit checks provide a quick go/no-go status for audio and video levels. The SDA series extends this capability with a dedicated digital limit set that can be applied exclusively to the forward digital carriers defined in a channel plan. By assigning separate analog and digital limits, test time is reduced since no calculation is necessary to determine if analog and digital level relationships are within system specifications. Analog and digital limit capability is available in both the Scan and Autotest modes.

Tilt Measurement

Tilt is the easiest and most efficient tool for balancing amplifiers. For cable plants requiring multiple tilt measurements, such as comparing today’s tilt measurement with a historical record and then taking an additional measurement for a new wider channel plan, the technician simply uses markers to indicate the tilt channels that define the new limits.

Scan Measurement

Scan mode provides a quick graphical view of the entire channel plan with bars representing the video level for each channel. Both video and audio may be displayed.
Carrier-to-Noise Measurement: In-Service

Taking carrier-to-noise measurements (on a non-scrambled channel) is easy. There is no need to remove modulation from the video carrier, and a tunable preselector filter is not needed.

Hum Measurement: In-Service

Measuring hum on a channel (non-scrambled) is as simple as pressing the "HUM" key. Since the instrument is battery powered, the measurement is independent of ground loops and is, therefore, isolated from the line (mains). Hum is revealed as either a single (60 Hz) or double (120 Hz) horizontal bars across the video screen. The level of either can be measured.

Modulation Measurement

Includes NTSC, PAL, and SECAM formats. Demodulation of the audio is done for both AM and FM. FM is used to hear audio distortion on the FM radio channels or the sound of the TV program. AM is used to recognize short-wave interference signals in the reverse band.

Local Amplifier Alignment w/Loopback Tests

The SDA loopback tests allow the technician to quickly perform frequency response measurements of active or passive field devices using a single meter. Either a CW or sweep signal may be generated from the SDA unit and injected to the input of a device under test. The DUT output can then be measured by the SDA, providing valuable information such as gain, loss, roll-off, or frequency response. The CW loopback test is available on the SDA-5000 when ordered with OPT 1. The CW loopback and sweep loopback features are available on the SDA-5000 when ordered with OPT 2.

Extensive Automated Test Capability

Automated tests can be scheduled to perform either 24-hour FCC compliance tests, or initiated immediately to log performance at individual nodes, amplifiers, or other testpoints. A wide range of tests can be performed automatically, including signal levels, C/N, hum, and depth of modulation. The operator designates which tests to perform on which channels. Because these tests are non-intrusive, it is easy to test all parameters on all channels at anytime.

After a test is performed, the results can be displayed on the SDA screen. A pass/fail indication on a variety of limits can be set for FCC/CENELEC or other government standards, or to system preferences. Data taken during any automated test, or sequence of automated tests, can be viewed immediately with a pass/fail indication for each of the limits. Specific stored measurement results may be viewed on demand. Automated test results can be printed directly to a serial printer or uploaded to a PC using StealthWare to store and include in custom reports.
Data Analysis with StealthWare

Any stored SDA measurement information can be uploaded to a PC using StealthWare, a Windows™ based data management package. Stored sweep, scan, or spectrum screens can be viewed on the PC and analyzed with marker movement and readout information just the same as on the actual unit. A sweep graph overlay function allows comparison of multiple RF response variations over time. Old sweep graphs may be downloaded back into the SDA instrument for real-time comparison.

“One Box” Solution

How many test instruments should the network maintenance technician carry? One. A lightweight, rugged, and affordable meter with the versatility to test the latest digital services while maintaining the analog spectrum. This "One Box" philosophy shaped the design of the SDA series, adding the analog and digital test tools most requested by field technicians and system operators throughout the world.

Analog Testing
- Forward RF Sweep
- RF Level, Fast Scan, Tilt
- In-service Carrier-to-Noise, Hum, Depth of Mod.
- Fast Spectrum Display with CTB/CSO
- Auto Testing/24-Hour Testing (FCC and CENELEC Compliant)

Return Path Testing
- Reverse RF Sweep
- PathTrak Field View (Option)
- Reverse Alignment Mode Prepares Network for Cable Modem Deployment
- Zero Span Spectrum Mode
- DOCSIS/DAVIC Compatible Cable Modem Analysis

Advanced Digital Testing
- digiCheck Average Power
- QAM View Digital Analysis with MER, Pre/Post FEC, BER, Constellation, and Exclusive Noise/Ingress Under the Carrier Measurement

Upgrading from Stealth to SDA Series

A company’s test equipment investment is protected through the Acterna upgrade program. Any model 3SR, 3ST, or 3HRV can be upgraded to the SDA series at any of our worldwide service centers. And customers who own a model SSA-1000 can upgrade to the SDA series with an in-the-field firmware change only!

Customer Support

Acterna offers quality, cost-effective support programs that address all technical support needs. With over 20 fully equipped CATV accredited service centers worldwide, Acterna provides local product maintenance, calibration, and upgrades, along with technical training services.

CarePlan™ Customer Support Package

The Acterna CarePlan is a proactive technical support program designed to safeguard a company’s investment in Acterna’s products throughout their life cycle.

<table>
<thead>
<tr>
<th>Stealth to SDA Series–Product Upgrade/Replacement Guide</th>
<th>Stealth Model</th>
<th>SDA Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SR</td>
<td>3SR</td>
<td>3SR</td>
</tr>
<tr>
<td>3SR + 3RV option</td>
<td>3SR + 3RV option</td>
<td>3SR + 3RV option</td>
</tr>
<tr>
<td>3SR + 3RT option</td>
<td>3SR + 3RT option</td>
<td>3SR + 3RT option</td>
</tr>
<tr>
<td>3ST</td>
<td>3ST</td>
<td>3ST</td>
</tr>
<tr>
<td>3HRV</td>
<td>3HRV</td>
<td>3HRV</td>
</tr>
<tr>
<td>SSA-1000</td>
<td>SSA-1000</td>
<td>SSA-1000</td>
</tr>
<tr>
<td>SAM-4040</td>
<td>SAM-4040</td>
<td>SAM-4040</td>
</tr>
<tr>
<td>SAM-4040D</td>
<td>SAM-4040D</td>
<td>SAM-4040D</td>
</tr>
</tbody>
</table>

Any Stealth can upgrade to SDA-5000 for:
- 5 x faster sweep
- 256 QAM compatible sweep
- Improved TP Comp setup for reverse sweep
(a) Firmware (b) Hardware & Firmware

Any 3SR can be upgraded to SDA-5500 for:
- Faster forward sweep and digital signal sweep compatibility

Any 3ST can be upgraded to SDA-5500 for:
- Faster forward sweep and digital signal sweep compatibility

Any 3HRV can be upgraded to SDA-5510.

Stealth Model
- 3SR
- 3ST
- 3HRV
- SSA-1000
- SAM-4040
- SAM-4040D

SDA Replacement
- SDA-5000
- SDA-5000 with Option 1
- SDA-5000 with Option 2
- SDA-5500
- SDA-5510
- SDA-5500 with Option 2 (firmware only)
- SDA-4040D
- SDA-4040D (firmware only)
Key Benefits of the CarePlan Include:
- Cost-effective product maintenance support
- Annual calibration certification program
- Proactive hardware and software upgrades
- Technical support

Technology Training
Acterna provides a comprehensive CATV technology training program designed to help teams of technicians understand the changing needs of today's advanced networks.

Training Seminars Include
- HFC Basics
- Sweep and Balance Forward and Return
- Sweep 101 "Bootcamp"

Application Features

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>FEATURE</th>
<th>SDA-5000</th>
<th>SDA-5500</th>
<th>SDA-5510</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full frequency response testing</td>
<td>Forward sweep mode using headend transmission</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Reverse path alignment for new digital services</td>
<td>Reverse Sweep mode</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Prepare for cable modem deployment</td>
<td>Reverse Alignment mode</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>View return distortion and ingress as captured at headend</td>
<td>Reverse ingress/noise PathTrak Field View option</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Reverse path ingress troubleshooting</td>
<td>Built-in low-pass filter and preamp, dwell time</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Handle multiple reverse path sweep tests at one time</td>
<td>Multiple user reverse sweep reception (up to 10 simultaneous users)</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Pro-active reverse path maintenance capability</td>
<td>PathTrak Field View option</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Forward sweep without headend support</td>
<td>Sweepless Sweep using carrier levels only</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Forward path sweep carrier transmission</td>
<td>Forward transmission of sweep carriers</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Quick scan of active channel plan</td>
<td>SCAN mode w/limit check</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>View local distortion and ingress</td>
<td>Spectrum Display</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>View and measure cable modem carriers on return path (DOCSIS/DAVIC)</td>
<td>Zero Span TDMA Time Domain mode</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Test forward path digital services</td>
<td>diiCheck and QAM view option</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>CSO/CTB measurements</td>
<td>CSO/CTB mode</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Amplifier checks and alignment</td>
<td>TILT mode</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Local Amplifier and optical node alignment</td>
<td>CW Loopback (opt. 1 or 2)</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>In-service Carrier-to-Noise measurement</td>
<td>Sweep Loopback (opt. 2 only)</td>
<td></td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Analog and digital level measurements</td>
<td>C/N mode</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Depth of modulation measurements</td>
<td>LEVEL mode</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>digiCheck mode</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>MOD mode</td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
Specifications

FREQUENCY
Range .. 5 to 1000 MHz
Accuracy ±10 ppm at 25°C; ±10 ppm drift over temp.;
±3 ppm/year aging
Resolution Bandwidths 30, 280 kHz and 2 MHz
(30 kHz for CTB/CSO only)
Tuning Resolution 10 kHz
Sweep Resolution 250 kHz maximum

LEVEL MEASUREMENT
Range ... -40 to +60 dBmV
Resolution 0.1 dB
Accuracy .. ±1.0 dB from -20 to +50°C
Log Linearity ±0.5 dB
Flatness .. ±0.5 dB
Signal Types CW, single carrier, video
(single or dual audio/NICAM), audio, digital
Uncertainty for Digital Carrier additional ±0.5 dB (digital types 16/32/64/256 QAM,
QPR, QPSK, VSB, CAP-16, DVB/ACTS and TDMA
using zero span spectrum mode) @280 kHz RBW

CARRIER-TO-NOISE
In-service measurement. Non-scrambled channels only. No preselection required for 78 channels or less. Best dynamic range at +10 dBmV or higher input.
Range ... ≥ 52 dB
Resolution < 0.5 dB

HUM MEASUREMENT
In-service measurement. Carrier > 0 dBmV. Non-scrambled channels only
Range ... 0 to 10%
Resolution <0.2%
Accuracy .. ±0.7%

DEPTH OF MODULATION
Assumes presence of white reference on any VITS line. Non-scrambled channels only. Audio demodulation of AM and FM carriers
Range ... 80 to 100%
Resolution <0.5% at 85%
Audio Demodulation AM and FM Carriers

TILT MEASUREMENT
Up to 9 pilot carriers or video channels with tilt and level measurements on the highest and lowest.
Hi-Lo Δ Resolution 0.1 dB

SCAN MODE
All video, audio, pilot carrier, and digital channel levels displayed.

SWEEP MODE

SDA-5000 and 5500 only
Frequency Range 5 to 1000 MHz
Display Span user definable
Display Scale/Range 6 vertical divisions 1, 2, 5, or 10 dB/division
Sweep Pulse Occupied Bandwidth 30 kHz
Stability .. ±0.5 dB, normalized
(dependent on stability of referenced carriers)
Sweep Rate ~1 second (78 channels, including scrambled and digital signal types)
Channel Plan Templates (user editable)
.. China-1; China-2; France; HDTP-NL; Ireland;
Japan; Jerold; Jerold-HRC; Jerold-IRC; NCTA;
NCTA-HRC; NCTA-SUB; NCTA-IRC;
NTSC-Broadcast; OIRT-D/K; PL-B/G; PAL-UK

SPECTRUM MODE
Spans .. 3, 5, 10, 20, and 50 MHz (0.3, 0.5, 1, 2, and 5 MHz/div.)
Sweep Rates ~1 second updates with spans of 50, 20,
10 and 5 MHz ~1.7 second updates with 3 MHz span
Display Scaling and Range 0.5, 1, 2, 5, and 10 dB/div.
6 vertical divisions
Dwell .. programmable 0-25 ms
Spurious Free Dynamic Range 60 dB
Sensitivity Without Preamp -40 dBmV 5 to 550 MHz
-35 dBmV 550 to 1000 MHz
Sensitivity With Preamp -50 dBmV 5 to 550 MHz
-45 dBmV 550 to 1000 MHz
Max. Level With Preamp +50 dBmV

ZERO-SPAN MODE
Video BW >1 MHz, 100 kHz, 10 kHz, 100 Hz
Resolution BW 2 MHz, 280 kHz, 30 kHz
Measurement BW Compensation programmable 1 kHz to 99 MHz
Pulse Measurement Accuracy nominal level in 10 µs
±2 dB from nominal in 5 µs
(>1 MHz VBW, 280 kHz RBW)
Sweep Times 100 µs to 20 s (1,2,5 settings)

INTERMODULATION DISTORTION (CSO/CTB)
Range ... ≥ 60 dB
Resolution 0.1 dB

FORWARD TRANSMITTER

SDA-5000 with OPT 2/SDA-5500 only
Frequency Range 5 to 1000 MHz
Output Level +20 to +50 dBmV adjustable
in 2 dB increments
Spectral Purity Harmonics -30 dBc
Spurs-35 dBc
REVERSE TRANSMITTER
Requires SDA-5000 with OPT 1 or 2
Frequency Range .. 5 to 1000 MHz
Output Level .. +20 to +50 dBmV, adjustable
in 2 dB increments
Spectral Purity ... Hars -30 dBc; Spurs -35 dBc

TELEMETRY
Frequency Range .. 5 to 1000 MHz
Modulation ... FSK, 100 kHz deviation
Spectrum Required .. 1.0 MHz vacant bandwidth recommended
Spectral Purity ... Hars -30 dBc; Spurs -35 dBc

DATA STORAGE
Files stored: Autotests, tilt, channel plans, scan and forward sweep.
Also reverse sweep and reverse amp alignment on SDA-5000 with
OPT 1 or 2. Spectrum mode (regular with max hold and
CSO/CTB). Allocated on demand. The storage capability is simulta-
neous—more of one file type can be "traded" for less of another.
All files stored as database, not as screen picture. (Example: Typical mix
of files for 78-channel plan: 8 channel plans, 16 sweep references, 80
sweep traces, 40 scan files, 20 spectrum displays and 20 autotests).

SERIAL INTERFACE
RS232; Epson, IBM, Seiko, and Diconix Printers

INPUT CONFIGURATION
Connector Type ... 75Ω Type F Female
(Optional 75Ω Type BNC Female)
Maximum Sustained Voltage AC 100V DC 140V

GENERAL
Display ... 320x240 dot matrix LCD, selectable back light
SDA-5000 only
Dimensions .. 15.2 x 27.9 x 8.9cm
(6" x 11" x 3.5")
Weight .. 2.3 kg (5.1 lbs)
(with OPT.1 or 2, 2.5 kg, 5.5 lbs)
Temperature Range Operating -20 to +47°C (-4 to 117°F)

SDA-5500 and SDA-5510 only
Dimensions .. 48.3 x 13.3 x 35.6cm
(19" x 5.25" x 14")
Weight .. 6.8 kg (15 lbs)
Temperature Range Operating 0 to +50°C (32 to 120°F)

POWER SOURCES
Battery ... Field extended-life replaceable, nickel metal hydride
12V/3.5A-hr, 4 hours cont. use on a single charge
AC Line (SDA-5000) 100 to 250 VAC, 50 to 60 Hz, 0.5A
Charger Input .. 100 to 250 VAC, 50 to 60 Hz, 0.5A
Charger Output Aux out 16V @ 750 mA
Charge 15V @ 750 mA
AC Line (SDA-5500) 100 to 265 to 63 Hz – 100 VAC
47 to 63 Hz – 100 VA

NOTES
1) Typical Specifications
2) Relative to 25°C
3) @25°C and +20 dBmV

PATHTRAK FIELD VIEW (OPT 3 REQUIRED)

SDA-5000 and SDA-5500 only
Update Rate ... 2x/second (remote trace)
~1x/second (local trace)
Display Scaling .. 5/1/2/5/10/20 dB/div.
Selectable Nodes .. 14 (selectable via PathTrak HCU)

QAM VIEW OPTION (OPT 4)
The QAM View Option can be factory installed in any new or exist-
ing SDA Series instrument. The specifications and features are in
addition to the standard measurement features of the SDA Series.
When ordering, please specify OPT 4A for 8 MHz, DVB-C, ITU-T
J.83 Annex A, or OPT 4B for 6 MHz, DVS-031, ITU-T J.83 Annex B.

MODULATION TYPE
64/256 QAM, DVB-C, ITU-T J.83 Annex A (OPT 4A)
64/256 QAM, DVS-031, ITU-T J.83 Annex B (OPT 4B)

CHANNEL BANDWIDTH
8 MHz (OPT 4A); 6 MHz (OPT 4B)

MEASURABLE INPUT RANGE (LOCK RANGE)
64 QAM ... -20 to +50 dBmV (typical)
256 QAM ... -15 to +50 dBmV (typical)
FREQUENCY TUNING
50 to 860 MHz (Digital QAM mode)
Resolution .. 50 kHz

BER (BIT ERROR RATE)
64 QAM Pre-FEC/OPTs 4A and 4B 10^{-4} to 10^{-9}
64 QAM Post-FEC/OPTs 4A and 4B 10^{-4} to 10^{-9}
256 QAM Pre-FEC/OPT 4A and 4B 10^{-4} to 10^{-9}
256 QAM Post-FEC/OPT 4A and 4B 10^{-4} to 10^{-9}

MER (MODULATION ERROR RATIO)
64 QAM / Option 4A 22 to 35 dB
Accuracy ... ±2.0 dB (typical, see chart below)
64 QAM / Option 4B 21 to 35 dB
Accuracy ... ±1.5 dB
256 QAM / Option 4A 28 to 35 dB
Accuracy ... ±2.0 dB (typical, see chart below)
256 QAM / Option 4B 28 to 35 dB
Accuracy ... ±1.5 dB

EVM (ERROR VECTOR MAGNITUDE)
64 QAM / Option 4A 1.2% to 5.2%
Accuracy ... ±0.5% (1.2% to 2.0%)
... ±1.0% (2.1% to 4.0%)
... ±1.4% (4.1% to 5.2%)
64 QAM / Option 4B 1.2% to 5.8%
Accuracy ... ±0.5% (1.2% to 2.5%)
... ±1.1% (2.6% to 5.8%)
256 QAM / Option 4A 1.1% to 2.5%
Accuracy ... ±0.6%
256 QAM / Option 4B 1.1% to 2.5%
Accuracy ... ±0.5%

QAM LEVEL MEASUREMENT
Signal types ... 64 QAM, 256 QAM
Range ... -20 to +45 dBmV
Accuracy ... ±1.0 dB
Flatness ... ±0.5 dB
Linearity ... ±1.0 dB
Temperature ... ±0.5 dB (typical)

MEASURABLE QAM INGRESS
64 QAM ... -25 to -40 dBc
256 QAM ... -30 to -40 dBc
Accuracy ... ±3.0 dB

GRAPHIC DISPLAY
Digital summary (including MER/EVM, Pre/Post FEC BER, Equalizer Stress, Carrier Offset, Symbol Rate) with limit/margin test results, QAM level. IQ constellation with zoom. Adaptive Equalizer Display (in accordance with the DVB ERT 290 Standard), Frequency Response, Group Delay. Ingress/Noise Under the Carrier.

POWER SOURCE
Note: Option powered from SDA Series nickel metal hydride battery. Operating time is specified for continuous use in QAM View mode. Option includes high output charger.
Charge Time .. ~4 hours
Operating Time ... 2.5 hours continuous use (typical)
Universal AC Charger/Adapter
Input ... 100-250 V AC, 50 to 60 Hz, 0.5A
Output ... Charge15V @ 750 ma

PHYSICAL
(total SDA-5000 size with OPT 4)
Dimensions .. 15.2 x 26.7 x 10.8 cm
... 6” x 10.5” x 4.25”
Weight ... Approx. 3.5 kg (7.7 lbs)
Operating Temperature Range -20 to 45°C (-4 to 113°F)

Ordering Information
Model SDA-5000
1010-00-0473
Forward and reverse sweep field receiver with advanced signal analysis. Compatible with older Stealth units running firmware version 9.3. Includes: Extended-life nickel metal hydride battery, universal charger/AC adapter, and operators manual

Model SDA-5500
1010-00-0470
Headend Sweep Transceiver: Provides forward sweep and single user reverse sweep for SDA-5000. Compatible with older Stealth units running firmware version 9.3. Includes: Line cord, channel plan transfer cable, and operators manual

Model SDA-5510
1010-00-0472
Headend Reverse Sweep Manager: Receives reverse sweep from up to 10 SDA-5000 receivers with OPT 1 or 2 installed. Compatible with older Stealth units running firmware version 9.3. Includes: Line cord, channel plan transfer cable, and operators manual
Options

1019-00-1286
SDA-OPT1: Reverse Sweep capability for model SDA-5000

1019-00-1285
SDA-OPT2: Reverse sweep capability and 5 to 1000 MHz transmitter for model SDA-5000

1019-00-1290
SDA-OPT3A: PathTrak Field View interoperation for model SDA-5000 or SDA-5500 (PathTrak HCU)

1019-00-1287
SDA-OPT4A: 64/256 QAM, DVB-C, ITU-T J.83 Annex A. QAM View digital analysis including 64/256 Constellation, MER, Pre/Post FEC BER, and exclusive QAM ingress under the carrier feature. Please specify OPT version 4A or 4B when ordering

1019-00-1288
SDA-OPT4B: 64/256 QAM, DVS-031, ITU-T J.83 Annex B. QAM View digital analysis including 64/256 Constellation, MER, Pre/Post FEC BER, and exclusive QAM ingress under the carrier feature. Please specify OPT version 4A or 4B when ordering

1019-00-0460
SDA-OPT5: BNC connectors replace standard F type connectors

1019-00-1295
SDA-OPT6: Portable Reverse Sweep Manager converts SDA-5000 to hand-held version of the SDA-5510 (does not include forward sweep capability)

1010-00-0340
StealthWare: Windows compatible data management software for all SDA, Stealth, MicroStealth, and CLI products

Optional Accessories

1019-00-1298
SDA-CASE1: Replacement soft carrying case for all SDA instruments without QAM View option installed. Compatible with standard and extended-life batteries

1019-00-1190
SDA-NIMH: Spare extended-life battery

1019-00-1195
SDA-NIMCA: Universal charger/AC adapter for extended-life nickel metal hydride battery

1012-00-0057
SDA-NIMK: Extended-life battery kit. Includes extended-life battery, universal charger/AC adapter, and soft carrying case (SDA-CASE1)

Note: Specifications, terms, and conditions are subject to change without notice.

© Copyright 2001 Acterna, LLC. All rights reserved. Acterna, The Keepers of Communications, and its logo are trademarks of Acterna, LLC. All other trademarks and registered trademarks are the property of their respective owners.